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The metacommunity concept is an important approach 
in community ecology that explicitly recognizes that the 
composition of local communities and spatial variation in 
community composition, are influenced by both local (e.g., 
biotic interactions, environmental tolerances) and regional 
(e.g., dispersal, habitat fragmentation) factors (Leibold et al. 
2004). Increased interest in broad-scale patterns of biodiver-
sity and better understanding of the contributions of regional 
factors to local community assembly have changed our per-
ception of the community concept from a localized group of 
interacting species to one in which the spatial distributions 
of species have become a greater focus for understanding 
patterns of co-occurrence and local biodiversity (Ricklefs 
2008).

Although estimating the relative importance of ecologi-
cal mechanisms is the primary goal of ecology, it is often 
necessary first to identify ecological patterns to facilitate 
the identification of likely mechanisms that may give rise to 
observed structures. Metacommunity structure is an emer-
gent property that describes the relationships among species 
distributions along an environmental gradient (Leibold and 
Mikkelson 2002). Many idealized metacommunity struc-
tures have been described, with each structure representing 
a distinct prediction about relationships between ecological 
mechanisms and species distributions. For example, Cle-
mentsian structures are characterized by coincident range 
boundaries that delimit sets of communities with similar 
species composition that are distinctive from other such sets; 
Gleasonian structures arise from species-specific responses 
to environmental variation; strong competition and prior-
ity effects may result in checkerboard patterns among eco-
logically similar species that have overlapping geographi-
cal ranges; or variation among species in dispersal ability, 

habitat specialization, or abiotic tolerance may give rise to 
nested subsets.

Recently, a set of critiques have highlighted potential 
weaknesses in the ability of the elements of metacommu-
nity structure (EMS) to effectively identify metacommu-
nity structures and the importance of gradient selection or 
identification for this approach (Schmera et al. 2018). These 
critiques include (1) the viability of researcher-defined gra-
dients to evaluate EMS, (2) nested subsets and range turno-
ver not being opposite ends of a continuum, (3) lack of cor-
respondence between negative coherence and checkerboards, 
and (4) statistical implications of using a series of tests to 
identify structures.

Reciprocal averaging and identifying 
response gradients

Much of the confusion about the implementation or inter-
pretation of EMS is related to the importance of the gradient 
along which the elements are evaluated. Reciprocal averag-
ing (also called correspondence analysis) is used to order 
sites and species in a presence/absence matrix by simulta-
neously optimizing the proximity of species with similar 
distributions and the proximity of communities with similar 
species compositions, allowing species occurrences to define 
the latent environmental gradient that is important to species 
distributions (Gauch 1982). This provides factor scores for 
both sites and species with respect to the same gradient, an 
advantage over ordination methods that can only order sites 
or species, but not both (e.g., nonmetric multidimensional 
scaling, NMDS; principal component analysis, PCA). Unlike 
NMDS or PCA, reciprocal averaging does not maximize 
the variation explained along each orthogonal axis, rather 
correspondence between matrix orientations is maximized 
(Gauch 1982). For site by species matrices, this is the degree 
to which sites and species could simultaneously be ordered 
perfectly (i.e., the degree of correspondence achieved).

A similar ordination problem manifests for researcher-
defined gradients (Dallas et al. 2016): one can order sites 
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along an environmental gradient (elevation, temperature, 
pH), but how does one objectively choose the order of spe-
cies along that same gradient? Even if one can find a defensi-
ble method to order species along the same gradient, a prob-
lem arises in the attempt to evaluate statistical significance. 
A researcher can order empirical data along an environmen-
tal gradient, but matrices generated to create a null distribu-
tion for statistical evaluation have no environmental gradient 
along which to order sites or species. Schmera et al. (2018) 
correctly note the limitations of user-defined gradients for 
EMS, which likely is not statistically or methodologically 
viable. The mismatch between the gradient used to calculate 
empirical values and the gradient used to create distributions 
of randomly generated values leads to elevated type I or II 
error rates (Presley et al. 2019).

The primacy of coherence

EMS attempts to distinguish among many idealized struc-
tures using three characteristics of species distributions: 
coherence, range turnover, and range boundary clumping 
(Leibold and Mikkelson 2002). Coherence determines if 
species distributions are molded by the same environmen-
tal gradient. However, responses to that gradient may differ 
among species (i.e., locations and extents of ranges differ 
among species), giving rise to a host of possible metacom-
munity structures. Coherence is characteristic of 12 meta-
community structures that are distinguished by analysis of 
range turnover and range boundary clumping (Presley et al. 
2010). In contrast, checkerboards are thought to exhibit neg-
ative coherence (i.e., groups of species with ranges molded 
by multiple independent gradients), and random structures 
exhibit non-coherence (i.e., species ranges are not molded 
by shared environmental gradients).

In cases of non-coherence, the ordination does not effec-
tively represent species distributions along a shared environ-
mental gradient. Consequently, estimates of range turnover 
and range boundary clumping do not reflect the concepts they 
embody (turnover of species ranges along a gradient or clump-
ing of range boundaries along a gradient) and are not evaluated 
for non-coherent metacommunities (Leibold and Mikkelson 
2002). The same metacommunity may exhibit different struc-
ture along different gradients, with gradients often represent-
ing structure at different spatial scales (Presley et al. 2009; 
López-González et al. 2012). Changing the gradient changes 
the structure. Schmera et al. (2018) state that they “see no 
strong theoretical support for the priority of coherence in meta-
community structuring”. This ignores the importance of the 
gradient of analysis or the need to determine if species distri-
butions are molded by a common gradient. Further, Schmera 
et al. (2018) conclude that latent gradients identified via 
reciprocal averaging are not “real” environmental gradients, 

despite providing no supporting evidence. This seems unlikely 
as many dozens of studies have evaluated EMS along many 
100 s of latent environmental gradients for which supplemen-
tary analyses were able to identify underlying environmental 
gradients (see supplementary materials of Presley et al. 2019). 
In general, latent gradients have been associated with known 
important environmental gradients (e.g., disturbance, habitat 
type, elevation, latitude, water depth, salinity, temperature, pre-
cipitation, island size, habitat patch size, host identity), with 
results that are consistent with contemporary understanding of 
the ecology of the system.

Range turnover versus nestedness

Schmera et al. (2018) state that “the turnover test cannot 
always detect nested pattern, because turnover and nested-
ness are not necessarily the opposite endpoints of a con-
tinuum”. Schmera et al. (2018) correctly note that the EMS 
definition of turnover is not the same as other definitions (of 
which there are > 20; Tuomisto 2010). Uniquely, EMS eval-
uates characteristics of species ranges along a specific gradi-
ent, using a species range as a unit (turnover cannot happen 
within the range of a species), whereas other measures use 
species occurrences as units. There are two problems with 
the evaluation of the relationship between nested subsets and 
range turnover. First, analyses were conducted along differ-
ent gradients: nested subsets along a richness-occurrence 
gradient and range turnover along (presumably) the primary 
axis of reciprocal averaging. Second, one would not evalu-
ate range turnover without first considering coherence, as 
the metric does not represent the concept of range turnover 
along a shared gradient if it is not established that the ranges 
of species are molded by the same gradient (Leibold and 
Mikkelson 2002). Previous critiques of EMS (Ulrich and 
Gotelli 2012) also failed to recognize that the same gradi-
ent must be used to effectively compare measures of range 
turnover to those of nested subsets, and that range turnover 
is a metric that requires its associated axis to exhibit coher-
ence. The 10,000 randomly generated matrices produced by 
Schmera et al. (2018) were not evaluated for coherence prior 
to testing range turnover, nor did they report the number of 
random matrices consistent with positive coherence (though 
3.03% exhibited negative coherence, an acceptable type I 
error rate).

Range boundary clumping 
versus co‑occurrence

Range boundary clumping measures the degree to which 
range boundaries are clumped along a gradient. Ulrich 
and Gotelli (2012) interpreted the fact that range boundary 
clumping was weakly associated with measures of species 
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co-occurrence as evidence that the metric performs poorly. 
This comparison has two major faults. First, co-occurrence 
metrics are independent of any gradient: individual occur-
rences are the focal units and sites may occur in any order. 
Therefore, the comparison used different gradients as range 
boundary clumping is associated with a specific gradient. 
Second, the metrics embody independent concepts. Imag-
ine an elevational gradient along which species ranges are 
continuous. Species A occurs from 0 to 500 m and Species 
B from 50 to 450 m; these species exhibit positive co-occur-
rence but have no shared range boundaries. In contrast, Spe-
cies C occurs from 500 to 1000 m, exhibiting negative co-
occurrence with both Species A and B, but sharing one range 
boundary with Species B. Two species could have identical 
elevational distributions with two shared range bounda-
ries, but co-occurrence could be positive or non-significant 
if each species had multiple embedded absences. Conse-
quently, one would expect range boundary clumping to be 
only weakly associated with measures of co-occurrence.

Negative coherence and checkerboards

Checkerboards have been used as a metaphor for multiple 
patterns (Connor et al. 2013; Schmera et al. 2018; Presley 
et al. 2019). Checkerboards originally described geographi-
cally interspersed patterns of mutual exclusion by ecologi-
cally similar species (MacArthur et al. 1972). Subsequently, 
Leibold and Mikkelson (2002) expanded this concept to 
entire metacommunities by adding the criterion that distri-
butions of each mutually exclusive pair should be independ-
ent from other such pairs. Unfortunately, this definition is 
nearly identical to that of random metacommunity structure 
(i.e., non-coherence). Indeed, the only difference between 
random and checkerboard metacommunity structures is that 
in checkerboard structures each species has one mutually 
exclusive association, with all other associations being ran-
dom. Consequently, the dominant mechanism for both of 
these proposed structures is randomness, and the developed 
methodology cannot distinguish between random and check-
erboard structures (Presley et al. 2019). The idea that check-
erboard structures sensu Leibold and Mikkelson (2002) can 
be detected via analyses of coherence should be abandoned.

Series of tests and error rates

Schmera et al. (2018) calculate the likelihood of observing 
particular metacommunity structures by chance based on the 
required series of test results, and correctly note that these 
likelihoods make type II errors more likely for some struc-
tures than others. However, the single test used for nested 
subsets has unequal likelihood of observing each potential 

structure by chance: 0.05 for nested and 0.95 for non-nested 
structures. Is it more problematic that Clementsian and Glea-
sonian structures have unequal rates of occurring by chance 
(0.00002 and 0.00059, respectively)? Conservative analysis 
shows that 9–13% of systems are nested (Ulrich and Gotelli 
2007), given a 5% type I error rate, does this mean that about 
half of the systems identified as nested represent errors and 
that we should abandon this approach because it is only good 
at effectively identifying non-nested structures? I am play-
ing the part of Advocatus Diaboli here to establish context 
for this potential concern. There is no reason to expect that 
all metacommunity structures should have an equal chance 
of occurring, because the constraints for some are much 
greater than for others. A review of the literature (Presley 
et al. 2019) shows that the frequency of reported empirical 
structures are not associated with the combined probabilities 
of type I errors: Clementsian structures are most common 
(28% of all structures) despite having the lowest probabil-
ity of occurring by chance, quasi-structures occur only 60% 
as often as their counterparts despite being 19 times more 
likely to occur by chance. In all likelihood, responses to 
the environment are sufficiently strong to minimize issues 
related to unequal detection error rates among structures.

Concluding statement

The framework for EMS is not as straight forward as the 
analysis makes it appear, decisions made by users can 
have unexpected implications. Critical evaluations of EMS 
(Ulrich and Gotelli 2012; Schmera et al. 2018; Presley et al. 
2019) have been useful in highlighting potential conceptual 
and methodological weaknesses and pitfalls that users need 
to understand to make informed decisions when conducting 
analyses.

Users should be mindful of the potential for over inter-
pretation of EMS results and remember that these analyses 
are designed specifically to detect patterns that represent 
the relationships among species distributions along envi-
ronmental gradients (i.e., to identify the best fit metacom-
munity structure). Additional analyses and additional data 
are required to identify processes that contribute to these 
patterns (e.g., Leibold et al. 2004; Cottenie 2005). Despite 
attempts to match metacommunity level processes (envi-
ronmental filtering, dispersal, interspecific interactions) to 
metacommunity structures (Meynard et al. 2013), multiple 
processes can give rise to the same structure (Ovaskainen 
et al. 2019) or the same process can give rise to multiple 
structures (Presley et al. 2012). Moreover, it is likely that a 
combination of mechanisms (e.g., dispersal, habitat speciali-
zation, competition, predation, tolerance to abiotic condi-
tions) contribute to the structure of each metacommunity, 
with the relative importance of these mechanisms differing 
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among metacommunities or through time. Identification 
of the importance of ecological processes associated with 
each metacommunity requires comprehensive analysis 
(Ovaskainen et al. 2019) and cannot be determined by the 
identification of pattern alone.
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